Media

Ship Collision and the Offshore Floating Nuclear Plant (OFNP): Analysis of Possible Threats and Security Measures

Written by MIT CANES | Sep 18, 2024 6:14:14 PM


Report Date: September 2016
Appendices: No

Abstract

The OFNP research group in the Nuclear Science and Engineering Department at MIT is developing a power plant that combines two well-established technologies – light water reactors and offshore platforms – into a new design called the Offshore Floating Nuclear Plant (OFNP). Deploying a nuclear reactor aboard a floating platform up to 12 nautical miles into the ocean raises unique security questions and considerations. This investigation presents a framework for analyzing the threat of intentional ship collision, modeling damage and characterizing the effectiveness of potential solutions, as well as integrating or adapting the recommended security strategies into existing regulatory and legal environments.

First, a collision risk assessment is completed and a postulated design-basis collision threat (DBT) is determined to be a 150,000DWT ship. Next, using the DBT characteristics and the finite element modeling software ABAQUS, estimations for damage are provided for a reference case and for cases with variations in collision characteristics. Results indicate increased ship penetration from faster and larger ships, wedge-shaped ship hulls, fixed OFNP moorings, direct broadside collisions, and OFNP designs with less internal structural support. All of these trends are consistent with basic physics expectations. Additionally, in order to minimize risk of unacceptable damage, the results indicate that vessels larger than 70,000DWT should be restricted from entering within an eight-nautical mile exclusion zone.

The results from the previous assessments are then used to present technical, operational, and regulatory recommendations for damage mitigation. The analysis concludes with an assessment of the existing regulatory and legal environments in which the regulatory solutions would have to be implemented, provides an analysis of the degree to which the ideal regulations comply with existing laws, and then culminates with the presentation of further recommendations and a regulatory strategy framework for meeting security goals while achieving legal compliance.

In summary, this investigation considers the threat of intentional collision with an Offshore Floating Nuclear Plant and utilizes risk assessment techniques, numerical modeling, and public policy research to contextualize the threat, model possible damage, and present technical, operational, and regulatory solutions for avoiding or mitigating damage.

Program:     ANP : Advanced Nuclear Power Program

Type:     TR 

RPT. No.: 168